Offering workers hearing protection options

Much Like Protecting your sight or looking after your health, your hearing should also be protected, this article tackles hearing protection within the workplace and what type of earplugs are best, Enjoy.

OSHA regulations dictate we offer a “variety” of hearing protectors to noise-exposed workers. What is best practice for providing a variety while keeping inventory to a minimum?

Per CFR 1910.95(i)(3), “Employees shall be given the opportunity to select their hearing protectors from a variety of suitable hearing protectors provided by the employer.” But does “variety of suitable hearing protectors” mean two or 10, earplugs or earmuffs, different colors or different sizes?

The wrong approach is to choose a variety based on factors that have no effect on protecting hearing, including the published noise reduction rating. Some safety managers offer several different large foam earplugs that are yellow, green and orange – mistakenly assuming they meet the “variety” requirement and not realizing that a significant portion of their workforce will never achieve an adequate fit with a large foam earplug. In those cases, their supposed “variety” actually limits the number of workers adequately protected.

This bad assumption is often codified into company safety policies that require a minimum NRR: “Approved hearing protectors must have an NRR of at least 32 decibels,” or similar criteria. By definition, that typically means a large foam earplug. Despite the higher NRR based on 10 laboratory test subjects, workers with smaller ear canals will never achieve an adequate fit with those large foam earplugs to stop noise-induced hearing loss.

What are the factors that affect good fit of an earplug?

  • Size: Like a cork in a bottle, an earplug that is too large or too small will never achieve an acoustic seal to protect hearing. Offering a variety of sizes significantly improves the percentage of employees obtaining a good fit.
  • Shape: Ear canal openings may appear round, oval or slit. A foam earplug often fills an oval or slit opening better than pre-molded earplugs.
  • Ease of insertion: Some workers have difficulty rolling or inserting foam earplugs due to lack of mobility. For these workers, an earplug with a stem may be easier to insert.

Based on thousands of fit tests administered to workers in the field, the following four earplug styles provide a selection that would adequately protect nearly every worker:

  • Large foam earplug
  • Smaller foam earplug
  • Large reusable earplug
  • Smaller reusable earplug

The good news is that offering a variety does not necessarily increase cost. Buying 1,000 earplugs of one style or 250 earplugs of four different styles is fairly equivalent in cost. But the bigger variety significantly increases the probability that more workers will be adequately protected.

Many worksites adjust their inventory based on results of their fit-testing of hearing protectors. By reviewing which earplugs repeatedly provide the best fit, these companies identify the gaps or duplications in their offering and can adjust accordingly. Sometimes, this means adding a smaller-size earplug, but many times companies find they can remove some less-effective earplugs from their inventory. It’s not necessary to carry a dozen different earplug styles.

Finally, any offering of hearing protection needs a hands-on training component. How can a workers determine whether their ear canal is large or small, round or oval? It’s impossible to view your own ear canal opening in a mirror. A quick glance by a safety trainer can be of tremendous benefit in helping workers select the right earplug the first time.

WiFi Enabled LTE Small Cell Gateway Market to Register a Strong Growth By 2021 – PMR

On paper, connecting walkie talkie radios to a Wifi networkis is the most obvious method of controlling and communicating within a business. But the reality is that there aren’t many radios on the market that have the capability to do this and many wifi networks aren’t robust enough to manage lots of radios, this article predicts that this technology will be a growth market, we will wait and see.

WiFi enabled LTE small cell gateway is a type of a base station. Base station uses cellular wireless network for communicating with mobile phones or terminals. Base station connects mobile phones to a wireless carrier network and offers local coverage for a wireless network. The area of coverage varies from several miles to few city blocks. Each base station is typically owned by one carrier or wireless company and gives coverage only for that company’s network. It may also offer roaming coverage for other networks in case carriers have agreement for roaming and technology is compatible. Base station comprises of an electronic cabinet which connected by means of cables to a group of antennas. The antennas may be mounted on an existing structure or on dedicated tower structure including top of a building, church steeple or smoke-stack and water tower.

In radio communications, base station refers to wireless communications station implemented at a fixed location and used to communicate as wireless telephone system including cellular GSM or CDMA cell site, part push-to-talk two-way radio system, terrestrial trunked radio and two-way radio. A single location often operates several base stations owned by a different carrier. Smaller types of base stations or small cells include picocells, femtocells and microcells. WiFi enabled LTE small cell gateway is promising network element. A wide variety of base station deployments are in a small cell configuration. It has WiFi interface at end-use device and LTE interface at the carrier network.

Small cell is low-powered radio access nodes (operator-controlled) that operate in carrier-grade Wi-Fi (unlicensed) and licensed spectrum. Small cells normally have a range from 10 to numerous hundred meters. Small cell base stations are expected to play vital role in expanding the capacity of wireless networks due to increasing mobile data traffic. Mobile operators are increasingly looking forward to this technology in order to meet the rising demands for data, video and application access generated due to smart phones and other devices. Small cells aid mobile service that detect presence, interact wand connect with existing networks. Small cells offer increased quality of service and flexibility at an affordable cost. Small cell infrastructure implantation is an environmentally friendly approach as it reduces the number of cell towers and offers a cleaner signal using less power.

Rising numbers of wireless carriers or companies are taking dedicated interest in this industry owing to the proliferation of embedded WiFi features in fixed and mobile devices. Growing demand for more advanced handheld devices such as smart-phones and tablets is expected to create demand for technologies with high internet speed. This in turn, is expected to drive the growth of WiFi enabled LTE small cell gateways.

Chinese corporation bids to acquire Sepura

This news is making quite a buzz within the stock market forums, With two of our big players in our industry set to merge, this is huge news! Yes, Sepura have had their problems this year and Hytera have increased their market share, but we are not sure is this is good news or bad?

Another Asian corporation is set to hoover up a Cambridge UK technology company in a state of financial flux.

Communications technology business Sepura confirms it is in talks with Chinese company Hytera Communications Corporation Ltd.

It will be an all-cash deal but the acquisition price will be moderate because digital radios company Sepura is in a mess because of cash liquidity issues.

Sepura revealed the takeover talks after its share price spiked more than 25 per cent having nosedived in recent times due to cashflow issues and order delays.

Hytera is a world leading solution provider of professional mobile radio communications and operates globally.

Late today, Sepura issued a statement on London Stock Exchange confirming it was in preliminary talks with Hytera regarding a possible offer for the entire issued and to be issued share capital of the company.

Hytera confirmed to the Sepura board that any offer was likely to be solely in cash. The usual caveats were issued that there was no certainty any deal would go through and shareholders would be updated on new developments.

Founded in 1993 in Shenzhen, China, Hytera has grown to be a key player in the PMR (Professional Mobile Radio) communication industry with a large customer base in more than 120 countries and regions across the world.

In China, Hytera’s market share ranks first among Chinese manufacturers while globally Hytera has reached second place in the overall terminal category.

As one of the few corporations that masters TETRA, DMR and PDT technologies, and produces all series of products and solutions of all these mainstream digital protocols, Hytera leads in the draft of digital trunking standard in China.

Its acquisition of the Rohde & Schwarz TETRA business in August 2011 further strengthened its competitive edge in TETRA market.

Hytera has established a global sales network with 30 branches in the US, UK, Germany, Australia, Brazil and other territories and through  600+ partners across the world.

Hytera has an R & D team of over 1200 engineers in five research centres. Sepura won the Business Weekly Awards Business of the Year title in March after a record-breaking

2015 but hit liquidity problems this summer and has temporarily lost its CEO Gordon Watling to ill health.

http://www.businessweekly.co.uk/news/hi-tech/chinese-corporation-bids-acquire-sepura

How To Look After Your 2 Way Radio

Buying 2 way radio equipment is a very beneficial investment, but in order for you to get the most out of your money you should ensure that the equipment is well cared for. If you use and maintain your 2 way radios with proper care, they will function at their optimum capacity and you can expect them to last for many years. While no two way radio can last forever, there are some simple practices which can help extend the life expectancy of your two way radios and ensure they function at their very best. In this article, we are going to take a look at some of the top care tips for your 2 way radios;

Storage

You should always store your radio(s) correctly so as to keep it in a tip top condition. The ideal environment for storing your radio involves a cool and dry (ideally at room temperature, which should be about 72 degrees Fahrenheit) with limited exposure to the extreme weather conditions like excessive cold or heat, and such other elements of water and sunlight. Excessive temperatures can easily damage the batteries; the moisture may end up corroding the batteries. Also, when storing your 2 way radio, you should make sure that it’s turned off and batteries are removed.

Charging Your two way Radio

First of all, you should know that two way radios are usually slightly different, so you need to familiarize yourself with the specific charging instructions of your radio. That being so, it is important to note that nearly all of the manufacturers will advise that you to turn off your radio while it’s charging. If you do not, your radio will be drawing current and also charging at the same time, and this can end up shortening the lifespan of the battery.

Overcharging your radio batteries can also cause numerous problems and will have a negative impact on its’ overall battery life, so you should make sure that when it’s charged fully you unplug its’ charger; do not leave it charging all through the night if its’ likely to remain fully charged for a long period of time while its’ still being charged. When you buy new batteries its’ the only time you can leave the radio charging overnight before you start using them for the 1st time; it’ll help you get the maximum battery capacity.

Day to Day Use

Every 2 way radios user should be very mindful of their daily use. Although there are some 2 way radios which are designed to be quite robust, like the explosion proof and waterproof radios, they should still be treated with great care, always. Even if you have a waterproof or explosion proof radio, do not subject it to extreme temperatures.

You should also avoid grabbing your two way radio by its’ antenna, as this will eventually have a negative impact on your radio’s reception and transmission quality. In addition, you should also avoid drops so as to maximize the long term functionality of your radio; consider using two way radio belt clips so as to reduce the chances of your radio getting dropped and subsequently getting damaged. Protecting the exterior of your radio helps protect its’ interior, thus minimizing the repairs and the replacing of the equipment.

Another important tip to note when it comes to the day to day use of two way radios, is you should never expose your radio to any solvents (unless it has been designed to be used in the harsh conditions); this includes any cleaning fluids and alcohol. Also, try and stick with the accessories which are designed specifically for your particular type of radio; this is especially important when it comes to your radio battery, charger and adapter. Using an incompatible accessory can end up shortening your radio’s lifespan and can even destroy it.

Cleaning Your 2 way Radio

You should regularly clean your radio to keep it in good working condition. The most effective and efficient way of cleaning your 2 way radio also happens to be one of the easiest ways as well; strong chemicals or intensive cleaning isn’t necessary. The only supplies you’ll need include some water and a microfiber cloth. The microfiber cloth will effectively wipe away the smudges and dirt without causing any damage to your radio. As for the more stubborn marks and stains, you can use a damp cloth and then wipe until the radio is clean. Remember, never immerse your two way radio in water to clean it.

Conclusion

two way radios are among the most versatile and toughest communication solutions, often lasting for many years before needing any repairs or replacement. However, in order to extend the lifespan of your two way radio even further, it is best to employ the above tips for two way radio care to fully secure your investment. Protecting your 2 way radio will not only increase its’ longevity, but it also ensures that you will always have reliable communications. Well, as you can see above, taking care of two way radio is relatively easy, and the amount of maintenance required is minimal. A simple cleaning now and then, proper handling, maintenance and storage is all you need in order to extend the lifespan of your two way radio and keep it in a great working condition.

The arrival of 5G, cognitive radio and the future of connectivity

We are very excited about 5G, we have already reported on how the UK emergency services are moving over to a LTE network, and inevitably 5G is the next step for better, faster and more capable communications.  Not planned to be deployed until the next decade, we believe that 5G will allow us to communicate better with our Walkie talkies. The original article can be found here.

With faster and more reliable connections, we look at what the next generation of communications could mean for business

From smart cities to the internet of things (IoT), virtually every aspect of the modern world is becoming closely connected.

The extent to which we rely on our devices and the exchange of information means new systems are needed that not only handle far greater bandwidth, but that are capable of being deployed to cover areas that were previously unreachable.

The potential benefits for business are huge, with faster and more reliable connectivity not only enhancing how firms interact with customers and each other, but also lending itself to greater flexible working among staff.

The arrival of 5G

One development that many industry observers believe could be revolutionary is 5G. Following on from 4G, the fifth-generation mobile network is in its early stages of development and is expected to be rolled out between 2020–25.

Any tech that contributes towards the next phase of mobile connectivity is covered by the term 5G. And although there are still no set standards or specifications, the GSMA – a trade body that represents global mobile operators – has outlined eight key criteria, stipulating minimum requirements for speed, capacity and energy in order for something to be considered 5G.

According to Ofcom, once operational 5G could provide between 10–50 Gbps (gigabit per seconds) in download speeds (as compared to the 5–12 Gbps of 4G), and although most experts expect it to be at the lower end of the range, that would still mean you could download an HD movie in seconds.

But rather than simply being faster than the current 4G, it will also allow more devices to access the web – an essential requirement if the IoT is to take off – meaning it could be transformative for business.

Raj Sivalingam, executive director of telecoms for techUK, the trade association for the tech sector, says: “The potential of the IoT, particularly in the enterprise environment, has been hugely debated but its impact is almost certainly still undervalued.

“Mass deployment across sectors will boost efficiency and safety with pre-emptive fault correction; enable automatic reporting of accidents and allow real-time asset tracking, reducing crime and increasing productivity, to name just a few benefits.”

One potential bottleneck for 5G is spectrum availability – or lack of it. Radio frequencies for both 3G and 4G are already overcrowded. The provision of a new bandwidth will require widespread cooperation between operators, manufacturers and governments.

Infrastructure is also an issue, says Sivalingam. “Making the leap to 5G mobile services and getting more fibre into the fixed telecommunications networks will require substantial amounts of investment.

“We need the government and industry stakeholders to work to shift the UK from good levels of connectivity to great levels so that we continue to attract investors and startups, and to foster innovation from within the UK.”

Cognitive radio

One possible solution is cognitive radio. An adaptive radio and network technology, it can sense and respond to its operating environment and automatically tune itself to the best available frequencies, this makes it more reliable in extreme locations where signals are weak, potentially providing dependable, robust connections that are not hampered by interference or geography.

Finland-based KNL Networks has developed a system using the technology that uses short wave radio to transmit internet access to sites in remote locations ranging from oil rigs to polar research stations. KNL Networks CEO Toni Linden says: “We can provide similar connectivity to those from satellites but with a terrestrial radio system. Our radios receive the whole spectrum all the time, so rather than scanning, real-time broadband receiving is going on. Thus we can see and measure everything that’s going on in the spectrum and we can maintain the network connectivity that way.”

The tech opens up the possibility of providing seamless connectivity anywhere, giving business reliable online access to markets in parts of the world that have otherwise been unreachable. It could also enable media and other companies to broadcast without the need for expensive satellites.

Quantum key distribution

It’s not just data transmission, speeds and connectivity that pose challenges in the future, but the safety of that data too. Cybercrime is ranked alongside terrorism as among the most serious threats to the UK [pdf], and with data now the lifeblood of modern business, securing that data is of paramount concern. One technology that could provide the answer is quantum communications.

Conventional encryption relies on sending a decryption key alongside your secret data. The receiver then uses that key to decode your secret information. But problems arise because hackers can also copy this key and steal your data.

Quantum key distribution (QKD) is different because it encodes this key on light particles called photons, and an underlying principle of quantum mechanics means that a hacker trying to read or copy such a key would automatically alter its state, effectively leaving a hacker fingerprint so the sender and receiver know their information security had been breached.

China recently launched a quantum satellite to further research into this technology, with the hope of developing an uncrackable communications network.

In the UK, the Quantum Communications Hub is part of a national network of four hubs led by the universities of Birmingham, Glasgow, Oxford and York. Director Tim Spiller says: “We are developing quantum communications technologies along a number of different directions, notably short-range free space QKD, where the transmitter could be in future mobile phones, and chip-to-chip QKD through optical fibre, where the chips could be in future computers and other devices.”

With two thirds of British business falling victim to cybercrime in the past year the need for better encryption is clear.

Several companies currently offer commercial quantum key distribution systems include ID Quantique, MagiQ Technologies, QuintessenceLabs, SeQureNet and Toshiba, although its high cost and limited range means mainly banks and governments are its main users, with mainstream adoption still some way off.

Spiller added: “Certainly it would be desirable to improve the size, weight, power and cost points of current technologies and our work in the hub and elsewhere is addressing all these factors.”

Paul Lee, head of technology, media, and telecommunications research at Deloitte, highlighted a number of improvements which he expected to see coming down the line, including improved mobile antennae and base stations, as well as improvements to fixed networks such as G.fast that would enable copper cable to operate at much higher speeds.

“As they get steadily faster, new services emerge to exploit these greater speeds, which then requires the deployment of even faster networks. This tail chasing has been going on for decades and won’t stop in 2017.”

MIT’s new method of radio transmission could one day make wireless VR a reality

VR is the Buzz word for this year, every technology company clambering to get their headset out on to the market. Much of the market needs to catch-up though, the power of home computing needs to improve and removing the inevitable extra cabling and wires that come with current headsets. Luckily this article is about the future technology of VR headsets, see what we can expect as this technology grows.

If you want to use one of today’s major VR headsets, whether the Oculus Rift, the HTC Vive, or the PS VR, you have to accept the fact that there will be an illusion-shattering cable that tethers you to the small supercomputer that’s powering your virtual world.

But researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) may have a solution in MoVr, a wireless virtual reality system. Instead of using Wi-Fi or Bluetooth to transmit data, the research team’s MoVR system uses high-frequency millimeter wave radio to stream data from a computer to a headset wirelessly at dramatically faster speeds than traditional technology.

There have been a variety of approaches to solving this problem already. Smartphone-based headsets such as Google’s Daydream View and Samsung’s Gear VR allow for untethered VR by simply offloading the computational work directly to a phone inside the headset. Or the entire idea of VR backpacks, which allow for a more mobile VR experience by building a computer that’s more easily carried. But there are still a lot of limitations to either of these solutions.

THE MOVR PROTOTYPE SIDESTEPS TETHERED VR ISSUES

Latency is the whole reason a wireless solution hasn’t worked so far. VR is especially latency-sensitive, along with the huge bandwidth requirements that VR needs to display the level of high-resolution video required for virtual reality to work. But the MIT team claims that the millimeter wave signals can transmit fast enough to make a wireless VR headset feasible.

The issue with using millimeter wave technology is that the signal needs a direct line of sight, and fares poorly when it encounters any obstacles. MoVR gets around this by working as a programmable mirror that can direct the direction of the signal to the headset even while it’s moving to always make sure the signal is transmitting directly to the headset’s receivers.

For now, the MoVR is simply a prototype, with the team hoping to further shrink down the system to allow for multiple wireless headsets in one room without encountering signal interference. But even as a proof-of-concept, it’s an interesting perspective on how virtual reality could one day work.

World’s slimmest, buoyant DSC handheld radio unveiled

Icom are well known for their marine radios and when you are in a boat or on your yacht, you want a radio that if you accidently drop it in the water, you can turn around and pick it up really easily and not have to get the scuba gear out. This is the IC-M93D and it is the slimmest most buoyant radio on the market, now all they need is some waterproof (Icom radio earpiece

The IC-M93D EURO VHF/DSC handheld radio is the successor to the popular IC-M91D. Stylish and slim, this new Icom handheld contains an abundance of features including a dedicated built-in DSC receiver (meets ITU-R M.493-13 Class D DSC), internal GPS and active noise cancelling technology. In addition, an intuitive interface coupled with 2.3 inch full dot matrix high-contrast display and soft keypad makes this a comfortable and easy handportable to operate.

The IC-M93D EURO has an integrated DSC/GPS giving users the facility to send and receive DSC calls. A dedicated DSC receiver continuously monitors CH70 and is independent of the main receiver and other operation. Other important safety at sea offerings include a built-in compass, navigation and Man Over Board features.

Advanced noise cancelling technology on the radio reduces background noise by up to 90 percent on both outgoing and incoming calls making sure your communications are heard. The IC-M93D EURO come as standard with the BC-220 rapid charger which charges the standard Li-ion battery pack in just 2.5 hours. The handheld’s extended 1500mAh Li-Ion battery life provides a full day of use.

The IC-M93D EURO features Icom’s exclusive Float’n Flash and AquaQuake technology. Should the radio be dropped overboard, a flashing light will activate, making it easier to locate. The Float’n Flash feature works regardless of whether the power is turned on. The AquaQuake draining function uses low-frequency sound waves to clear water away from the radio’s speaker grill for clear audio.

Additional radio features include the IPX7 waterproof rating, 50 waypoint memories with alphanumeric names for navigation and a loud speaker.

Ian Lockyer, Marketing Manager of Icom UK, said: ‘The IC-M93D EURO combines advanced safety features with an intuitive user interface for faster and easier access to all the radio functions.’

The IC-M93D is now available to buy from authorised Icom Marine Dealers with a suggested retail price of £349.95 including VAT.

Far offshore windfarms present communications challenges

This is an interesting article debating the different types of communication that can be used over a long distance, and as they distance moves further and further, the different types of communication drop off or become part of an infrastructure. As engineers battle with this problem, knowledge of how radio frequencies and applications becomes paramount.

As offshore windfarms are built further and further from land, alternatives to conventional VHF communications are going to be required

A cornerstone of any major project is clear communication between all parties. As we move windfarm construction further offshore, maintaining efficient voice and data communications becomes essential. With many projects now being constructed beyond the range of VHF radio and cellular telephone, such as a Gemini or Dudgeon offshore windfarms, crew transfer vessel (CTV) operators and their clients are experiencing challenges achieving practical and affordable offshore communications. My experience on two far offshore projects in the last 15 months has shown that creative thinking can work together with existing equipment such as TETRA radio to reduce the risks and stress that poor communications can generate.

Communication solutions on offshore windfarms depend on the phase that the operation is in, the size of the project and the distance from shore. Many smaller, older windfarms rely on VHF radios to communicate between shore and vessel and shore/vessel and work team on the turbines. However, VHF is limited in range being a line-of-sight system, and the signal has trouble penetrating structures such as wind turbines due to the Faraday cage effect. Conventional cellular telephone coverage is also possible on nearshore sites, with some windfarms installing a cellular mast within the windfarm. Vessels at anchor off the Dutch port of IJmuiden can thank the windfarm industry for good connection when waiting for a pilot if they have contracts with the provider KPN.

When moving further offshore, luxuries such as a cellular mast will not be installed during the construction phase, and it is most likely that VHF radios will not be sufficient. It is common for the developer to install a TETRA radio network – similar to those used by national emergency response services such as police and fire departments.

TETRA, or terrestrial trunked radio as it is properly termed, is a secure network allowing one-to-one, one-to-many and many-to-many communications. This means that the marine controller can speak directly and privately to one party or to the entire offshore spread depending on what is needed. It transmits on a lower frequency than VHF so covers a greater range. This still is not enough to cover the distances experienced on far offshore windfarms. If multiple base stations are used, each base station can then automatically rebroadcast a message thus expanding the network coverage. On a recent construction project, it was found that there were communications blackspots in the area of the sea passage from the base port to the site. This was later eliminated by fitting full base station units rather than just handheld transceivers on the CTVs. The CTVs then became vital links in the communications network and ensured the blackspots were reduced or eliminated altogether.

TETRA has many other advantages, including the ability to penetrate the tower of a wind turbine, and calls are not dropped when moving between base station carriers due to the network configuration. This is especially important if vessel-carried base stations are relaying far offshore. The network is also secure, which ensures that commercially sensitive information cannot be intercepted. With the one-to-one mode, it also means that managers can have detailed conversations on sensitive subjects.

However, anecdotal information received from vessel crews in the field appear to indicate that TETRA, although a good system, is not foolproof. One vessel master reported that, after 15 months on site, they still had blackspots with TETRA and sometimes have to use the cell phone application WhatsApp to request that turbines be started or stopped so that he can land a team.

TETRA does not solve the operational problems experienced by vessel-operating companies who require frequent voice and data communication with the CTVs to ensure a smooth delivery of service. As most sites far offshore are outside of cell phone coverage and clients demand that daily reports are issued on time, creativity is needed. There is a simple solution that could solve all of the communication problems far offshore – installing VSAT satellite communications on each CTV, which allows instant telephone and data transfer.

However, the practicalities of chartering in today’s windfarm industry eliminates this option, as the client will not want to pay for installation and operation, and a vessel owner cannot afford such a luxury. Charterers therefore need to make a decision: either they assume responsibility and the costs for practical workable satellite communications on their vessels or look for practical alternative solutions to deliver what is needed far offshore.

One practical solution to maintain communications between the marine co-ordination centre and vessels is to step back a generation and use medium frequency/high frequency single side band radios, which are common equipment on larger CTVs and is standard on service operation vessels (SOVs) or installation vessels.

When used in conjunction with the digital selective calling (DSC) function of the GMDSS standard, voice communications can be maintained at long distance without operating cost. Unfortunately, current guidance for the marine co-ordination in windfarms as found in the G9 Good practice guideline: The safe management of small service vessels used in the offshore wind industry does not yet consider marine co-ordination and communications in far offshore windfarms.

Another practical solution to improve data communication is to install powerful WiFi antennas on the decks of SOVs and other major offshore assets to allow CTVs to have internet access when they are in close proximity. CTVs can then download passenger manifests and weather reports and upload the daily progress report and synchronise planned maintenance and email systems.

CTVs spend considerable time in close proximity to the SOV during passenger transfer, bunkering or waiting for the next assignment, and it is relatively easy to set up the computers to connect and synchronise without operator input, thus reducing the risk of distraction. SOVs should be designed with space for CTV crews to use as a secure office so that laptops can be left connected to the network. In this way, crews can have two computers and prepare work when on shift, transfer via a data stick and upload when they go off shift.

One of the most effective tools that we have identified is WhatsApp, which seems to require very low signal strength to connect and transfer brief messages. On recent projects, we have found that most vessel/office communication occurs in this medium, including fault finding and incident reporting and investigation. Crews have found it quicker to video a CCTV system playback and send via WhatsApp than download the CCTV video and send it via a file transfer service. As synchronising an electronic planned maintenance system offshore is very time consuming, our superintendents have taken to sending the worklists via WhatsApp to the vessels who then confirm back with text or images when a job is complete. The superintendent then does the PMS administration from their office with the advantage of high speed network connections. Experience with WhatsApp has led me to believe that agile, low data applications will form part of the future of offshore communication.

Far offshore projects have moved from planning and dreaming to reality. However, effective and cost-efficient communication solutions have not moved with them. Like most challenges with far offshore windfarms, there is no single solution, but experience has shown that, with creativity and flexibility, projects can communicate with their teams and operators can manage their vessels.

Better equipment earlier on in the construction phase, such as MF/HF radios in the MCC and on the vessels, TERA base stations on the vessels and open deck WiFi on construction assets will all assist in improving safety and reducing stress while ensuring that unnecessary costs are not incurred.

Motorola Solutions’ digital two-way radio technology enhances mission-critical communications at Munich airport

Motorola solutions are a company well known for their robust two way radios and for building world class communication structures. Improving on the current TETRA system with an IP dispatch console and piloting the WAVE system, that allows a phone app to connect to the radio system, for communicating of site. You can read more about what Motorola are doing for Munich below and you can find the original article here.

Motorola Solutions has received an order to implement a comprehensive update and extension of its existing TETRA digital two-way radio system at Munich Airport.

The newly modernized communications infrastructure ensures greater connectivity, interoperability and collaboration between various business and operational functions at Germany’s second largest airport. Motorola Solutions will also provide services for ensuring smooth operations.

Within the framework of the TETRA radio network refresh, Motorola Solutions is equipping the airport with a new MCC 7500 IP Dispatch Console. The comprehensive, scalable solution enhances the IP architecture to ensure optimum call set up and availability. It will also allow Munich Airport to expand its communications infrastructure in the future without interrupting existing services. As well as this, Motorola Solutions will implement two TETRA base stations for improved TETRA radio coverage in the terminal buildings.

Alongside the improvements to the TETRA system, the airport has started a pilot project for the potential introduction of Motorola Solutions’ broadband push-to-talk (PTT) platform WAVE. The goal of the installation is to ensure that airport staff can communicate, no matter which device or infrastructure is being used. The powerful PTT solution WAVE™ Work Group Communications provides airport authorities with secure and reliable communications beyond TETRA radio – including broadband devices and networks – to enable greater workforce connectivity, interoperability and collaboration. WAVE connects the TETRA system used by administrative staff with service management employees who join the broadband platform via smartphones, computers, other radios or telephones, meaning that staff across the airport can communicate with one another from virtually any location.

“We have been working with Motorola Solutions’ TETRA two-way digital radio system since 2007,” said Michael Zaddach, head of the IT service division at Flughafen München GmbH. “The update of our TETRA infrastructure enables us to further improve our communications in airport operations and make our processes even more efficient.”

“We are collaborating closely with Munich Airport to provide a future-proof TETRA digital two-way radio network,” said Klaus-Dieter Drossel, sales director for key accounts, Motorola Solutions Germany GmbH. “We are also pleased that Munich Airport is testing our broadband push-to-talk platform WAVE, and we are certain that it will enable airport staff to work together more closely, no matter which device or network they use.”

Sony Announces AI Assistant Earpiece to Go on Sale in November – See more at: http://aibusiness.org/sony-announces-ai-assistant-earpiece-to-go-on-sale-in-november/#sthash.nm99apky.dpuf

Smart earpieces are the next frontier for the smart generation, we have all seen the earpiece that can translate instantly But that is just the start, as we can see from this article about this Xperia Ear wireless earpiece, it updates you from your phone when you put it in your ear. It won’t be long before we won’t need a smart phone everything will be in our ear.

Sony has revealed its ‘smart personal assistant’ that include a bluetooth earpiece will go on sale in November.

At the IFA show in Berlin today, the firm confirmed it will launch this November ‘starting in select markets,’ although its price has still not been revealed.

The Xperia Ear wireless earpiece can update you with any missed calls or messages as soon as you slot it into your ear.

The firm also showed off a Xperia Agent, a robot measuring just over one foot tall, that also works as a PA.

‘It will navigate you to where you want to go and make your life eye-free and hands-free,’ said Sony Mobile’s President and boss, Hiroki Totoki of the ‘her’ earpiece when it was unveiled at the MWC show earlier in the year.

‘It is also powered by Sony’s voice technology and will respond to a number of commands.’

The firm says the smart earpiece ‘is a next-generation wireless ear-piece that brings a new way of communicating, without compromising on enjoying the world around you.’

It reads users information such as your schedule, weather and the latest news to keep you up-to-date on the go.

Powered by Sony’s voice technology, it responds to verbal commands, so you can ask it to make a call, perform an internet search, dictate a message or navigate to a certain location.

It connects to an Android smartphone via NFC or Bluetooth and talks to a host application, where you can customise settings, including the info you need when you first connect in the morning, touch commands and app notifications.

‘Its lightweight and comfortable soft silicone ear-bud is built for continuous wear, with IPX2 water-protection and all-day battery life3,’ Sony said.

It’s available in Graphite Black and the innovative case doubles as a charger, so you can simply pop it in when you need to recharge.

It also unveiled the Xperia Eye, a wearable camera that acts as your personal sidekick, capturing everyday life moments with a 360 degree wide-angle lens.

Unveiled at Mobile World Congress (MWC) in Barcelona, the Xperia Eye can be attached to clothing or worn around the neck.

It forms part of a suite of connected gadgets designed to free people up from their phones.

Sony said the Xperia Eye is ‘a vision for a personalised assistant’ and joins three other smart gadgets that are connected to a Sony smartphone that acts as a hub, feeding information to them such as notifications.

These are Xperia Agent, Xperia Project and Xperia Ear.

Xperia Agent is a security camera-style device which acts as a home monitoring system, keeping an eye on what’s going on around it and projecting notifications fed to it from a Sony smartphone onto surfaces around it.

‘It will provide you with useful information, communication assistance and home appliance controls,’ Sony said.

Xperia Project projects an interactive interface onto any clear surface, meaning you can manipulate images, webpages and screens you would usually find on your smartphone, onto a hard surface.

Sony claims this projected image will respond to touch, voice and gestures just as someone would interact with your smartphone screen.

The Xperia Ear is a wireless earpiece that will update you with any missed calls or messages as soon as you slot it into your ear.

‘It will navigate you to where you want to go and make your life eye-free and hands-free,’ said Sony Mobile’s President and boss, Hiroki Totoki.

‘It is also powered by Sony’s voice technology and will respond to a number of commands.’

The wearable camera is the first time Sony has shrunk its image sensing and camera technology into such a small device.